Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение».
В математике используются разные явные определения. Наиболее распространенное из них - определение через ближайший род и видовой признак. Родовидовое определение еще называют классическим.
Примеры определений через род и видовой признак: «Параллелограмм - это четырехугольник, у которого противоположные стороны параллельные», «Ромбом называется параллелограмм, стороны которого равны», «Прямоугольником называется параллелограмм, у которого углы прямые», «Квадратом называется прямоугольник, в которым стороны равны», « Квадратом называется ромб, у которого прямые углы».
Рассмотрим определения квадрата. В первом определении ближайшим родом будет «прямоугольник», а видовым признаком – «все стороны равны». В втором определении ближайший род «ромб», а видовой признак – «прямые углы».
Если же взять не ближайший род («параллелограмм»), то видовых признаков квадрата будет два «Квадратом называется параллелограмм, у которого все стороны равны и все углы прямые».
В родовидовом отношении находятся понятия «сложение (вычитание, умножение, деление)» и «арифметическое действие», понятие «острый (прямой, тупой) угол» и «угол».
Примеров явных родовидовых отношений среди множества математических понятий, которые рассматриваются в начальных классах, не так уже и много. Но с учетом важности определения через род и видовой признак в дальнейшем обучении желательно добиваться понимания учениками сущности определения этого вида уже в начальных классах.
Отдельные определения могут рассматривать понятие и по способу его образования или возникновения. Определение такого типа называют генетическими.
Примеры генетических определений: «Угол - это лучи, которые выходят с одной точки», «Диагональ прямоугольника - отрезок, который соединяет противоположные вершины прямоугольника». В начальных классах генетические определения применяют для таких понятий, как «отрезок», «ломаная», «прямой угол», «круг».
К генетическим понятиям можно отнести и определение через перечень.
Например, «Натуральный ряд чисел — это числа 1, 2, 3, 4 и т.д.».
Некоторые понятия в начальных классах вводят только через термин.
Например, единицы времени год, месяц, час, минута.
Есть в начальных классах понятия, которые подаются символическим языком в виде равенства, например, а ×1= а, а× 0=0
В начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий - одна из условий формирования у учеников твердых знаний об этих понятиях.
Новое в образовании:
Методика изучения линейной, квадратной и кубической функции в VII классе
Большинство изучаемых в школьной математике функций образует классы, обладающие общностью аналитического способа задания функции из него, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим пре ...
Народная игрушка и игры детей
Одним из действенных средств воспитания на протяжении многих веков служил фольклор — искусство, создаваемое народом и широко распространенное в быту. Это музыкальное, танцевальное, словесное творчество и др. Велико было воздействие на воспитание детей слова, произведений устного народного творчеств ...
Проблема творчества вообще и роль творчества в развитии личности
В настоящее время проявляется огромный интерес к проблемам педагогики и психологии творчества в социальной и экономической, материальной и духовной сферах жизни. Несмотря на то, что творчество изучалось и ранее, оказалось, что в современных условиях, в развитие его педагогических и психологических ...